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STABILITY OF THE EQUILIBRIUM STATE IN A CONVECTION MODEL

WITH NONLINEAR TEMPERATURE AND PRESSURE DEPENDENCES OF DENSITY

UDC 532.51.013.4:536.25V. B. Bekezhanova

The convection of a heat-conducting viscous liquid is considered. It is assumed that the liquid density
depends quadratically on the temperature and pressure. The instability of the equilibrium state of
a free-boundary horizontal layer with respect to small perturbations is studied using a linearization
method. It is found that the state of mechanical equilibrium is unstable. Neutral curves are con-
structed and the critical Rayleigh numbers are found. The results are compared with the well-known
solution of the same problem for the limiting case where the density is a quadratic function of tem-
perature and does not depend on pressure.
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Introduction. Observations performed at Lake Baikal indicate the presence of a deep mixing mechanism
that transfers surface water to bottom regions [1]. One of the possible causes of this phenomenon is a thermal
expansion anomaly.

We assume that the density is a function of only temperature and does not depend on pressure. Then, the
equation of state for water becomes

ρ = ρ0(1 − α(θ − θ0)2), (1)

where ρ0 is the maximum density reached at a temperature θ0, which is called the inversion temperature or the
temperature of the thermal-expansion anomaly of the liquid, α is the thermal-expansion coefficient, and θ is the
temperature. For water, ρ0 = 999.972 kg/m3, the inversion temperature is θ0 = 277.13 K, and α = 8.57 · 10−6 K−2.
It should be noted that the maximum density is reached within the layer, i.e., the surface temperature is higher
than inversion temperature, and temperature of the lower boundary is lower than the inversion temperature. In this
case, a complex vertical stratification arises. In the upper part of the layer, the density increases in the direction of
gravity and the liquid is gravitationally stable, and in the lower part of the layer, the liquid density stratification
is unstable. The convective flows that arise in the unstable part of the liquid propagate to the upper stable zone.
This phenomenon is called penetrative convection. If the thickness of the layer is insignificant, the density variation
due to the pressure effect can be ignored. However, in studies of the processes occurring in deep-water pools (in
particular, in Lake Baikal), it should be taken into account that pressure gradients can have a significant effect on
the density distribution, and, hence, convective processes. Therefore, instead of (1) we shall use the equation of
state for the liquid in the form

ρ = ρ0(1 − α(θ − θ∗)2), (2)

where θ∗ = θ0(1 − δ0p), p is the pressure, and ρ0, θ0, α, and δ0 are positive constants. Equation (2) is a simplified
version of the equation of state

ρ(θ, p) = ρm(p)[1 − ϕ(p)(θ − θm(p))2].
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Fig. 1. Flow diagram.

The form of the functions ρm(p), ϕ(p), and θm(p) and the reasons for the choice of this equation of state are given
in [2]. In (2), the functions ρm(p) and θm(p) are replaced by the zero terms of the Taylor series of ρ0 and θ0,
respectively. The constant δ0 is determined from the expression for θm(p). For the specified values of the physical
parameters (for Lake Baikal water), the error in determining the density by Eq. (2) is less than 1%.

The use of the equation of state (2) is consistent with the data of full-scale observations obtained at Lake
Baikal [3, 4]. In particular, it is noted [3, 4] that the maximum density point in the lake is at a depth of 250–300 m.

In the present study, we use model equations of free convection in which thermal expansion is taken into
account only in terms containing the Archimedean force (the Oberbeck–Boussinesq approximation).

1. Formulation of the Problem. Let a region Ω(t) be filled with a liquid in contact with a gas phase.
The equation of state has the form (2). The x and y axes are in the plane of the lower boundary of the layer,
and the z axis is directed upward. The thickness of the layer is l. The lower boundary of the layer is a solid wall,
and the upper boundary is an nonderformable free boundary (Fig. 1). The surface Γt is defined by the equation
f(x, t) = 0, where x = (x, y, z). In the region, Ω(t) the Oberbeck–Boussinesq equations are valid:

div v = 0,
∂θ

∂t
+ v · ∇θ = χΔθ,

ρ0

(∂v

∂t
+ v · ∇v

)
= −∇p + div (2μD) + ρg.

(3)

Here v = (u, v, w) is the velocity, χ is the thermal diffusivity, μ is the viscosity, D is the strain rate tensor of the
vector field v with the elements

Dij =
1
2

( ∂vi

∂xj
+

∂vj

∂xi

)
(i, j = 1, 2, 3),

ρ is defined by formula (2), g = (0, 0,−g), and g is the acceleration of gravity.
Temperature and the attachment condition are specified at the solid wall:

θ = θ1, v = 0 at z = 0; (4)

and kinematic, dynamic, and energetic conditions are imposed at the free surface:

v · n = Vn, P · n + pg · n = 0,

k
∂θ

∂n
+ b(θ − θg) = Q at z = l.

(5)

Here n is the normal to the surface Γt, Vn is the velocity Γt in the direction of the normal, P = −(p + μ′ div v)I +
2μD(v) is the stress tensor in the liquid, μ′ is the dilatational viscosity coefficient, I is unit tensor, k is the thermal
conductivity of the liquid, b is the interfacial heat-transfer coefficient, θg and pg are the gas temperature and
pressure, and Q is the specified heat flux.

2. Equilibrium State. In the equilibrium state, θt = pt = 0 and ve = 0. The incompressibility equation
is satisfied identically. From the energy equation, it follows that θe is a linear function z of the form
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Fig. 2. Curve of pe(z) for l = 500 (1), 730 (2), and 1000 m (3).

Fig. 3. Density distribution over the layer thickness: 1) l = 500 m, l∗ = 209 m, and θ0 = 3.37◦C;
2) l = 730 m, l∗ = 240 m, and θ0 = 2.96◦C; 3) l = 1000 m, l∗ = 244 m, and θ0 = 2.43◦C.

θe(z) = Az + B, (6)

where the constants A and B are determined from the boundary conditions at the free surface and solid wall,
respectively:

A =
Q − bB + bθg

k + bl
, B = θ1.

The momentum equation reduces to the equation

pz = −ρg. (7)

We denote pe = p1 + ρ0g · x = p1 − ρ0gz. Then, Eq. (7) becomes

p1z = C(p1 + Dz + E),

where

C = ρ0gαθ2
0δ

2
0 > 0, D =

A − θ0δ0gρ0

θ0δ0
< 0, E =

B − θ0

θ0δ0
< 0.

The constants D and E are negative for the real physical parameters of the liquid (Lake Baikal water).
Setting Dz + E = η, p1 + η = y, and C/D = C1, we obtain the equation

dy

dη
= 1 + C1y

2.

After the change C1y
2 = −x2 (since C1 < 0) inverse substitutions, solution (7) is written as

pe =
1√|C1|

C3H(z) − 1
C3H(z) + 1

− Dz − E − ρ0gz,

where the constant C3 is determined from the dynamic condition at the free boundary:

C3 =
1 +

√|C1| (pg + Dl + E + ρ0gl)
H(l)

√|C1| (pg + Dl + E + ρ0gl)
,

H(z) = exp (2
√|C1| (Dz + E)).

The function pe is downward convex and nearly linear (Fig. 2). The lower boundary corresponds to the
value z = 0.

Substitution of pe into (2) into yields the function ρ(z). The curves of ρ(z) plotted for various layer thicknesses
l are shown in Fig. 3 [l∗ is the layer thickness for which the water density ρ takes the maximum value (the coordinate
of the inversion].
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Thus, we obtained a steady-state solution ve, pe, θe of the boundary-value problems (3)–(5) that corresponds
to the state of mechanical equilibrium.

3. Dimensionless Parameters. We write system (3) in dimensionless variables. For this, we use the
width l∗ of the lower part of the layer, in which the liquid is stratified unstably, as the characteristic length, the
difference T = θ1 − θ0 as the temperature scale, and the velocity of convective rise of a heated liquid particle
v∗ =

√
gl∗αT 2 as the velocity scale. For the density and pressure, we use the sales ρ0 and ρ0v

2∗ , respectively. The
temperature is reckoned from the temperature of the lower boundary θ1, and the pressure from the hydrostatic
pressure.

We introduce the dimensionless variables ξ = (ξ, η, ζ) and τ such that

x = (x, y, z) = ξl∗, t =
l∗
v∗

τ, l∗ =
l

λ
, λ =

θ1 − θb

T
,

p = ρ0v
2
∗p

′, v = v∗v′, θ = Tθ′.

Here λ is the inversion parameter, θb is the free-surface temperature calculated by formula (6), p′, v′, and θ′ are
dimensionless functions of the pressure, velocity, and temperature, respectively.

Under the adopted assumptions, the free-convection equations in the dimensionless variables are written as
follows (the primes are omitted):

div v = 0,
∂θ

∂t
+ v · ∇θ = δΔθ,

∂v

∂t
+ v · ∇v = −∇p + μ1Δv −

( 1
β
− (θ + εT p)2

)
k.

(8)

Here δ = χ/(l∗v∗) is the Fourier number, μ1 = ν/(l∗v∗) is the kinematic-viscosity parameter (the reciprocal of the
Reynolds number), ν = μ/ρ0 is the kinematic viscosity, β = αT 2, εT = θ0δρ0v

2
∗/T , and k is the unit vector of the z

axis.
The boundary conditions in the dimensionless variables become

θ = 0, v = 0 at ζ = 0; (9)

w =
∂u

∂z
=

∂v

∂z
= 0,

∂θ

∂ζ
+ Bi (θ − θg) = Q, p = 0 at ζ = λ. (10)

Here Bi = bl∗/k is the Biot number and Q = kT/l∗ is the dimensionless heat flux.
4. Small-Perturbation Equations. Let vd(ξ, τ) = v(ξ, τ) + δV (ξ, τ), pd(ξ, τ) = p(ξ, τ) + μ1δP (ξ, τ),

and θd(ξ, τ) = θ(ξ, τ) + Θ(ξ, τ), where V = (U, V, W ), P and Θ are perturbations, and v, p, θ is the basic solution.
The form of the functions vd, pd, and θd describing the perturbed motion is chosen to simplify the subsequent
transformations. The functions vd, pd, and θd are solutions of Eqs. (8) subject to boundary conditions (9) and (10).

The linearized system has the form

div V = 0,
∂Θ
∂τ

+ v · ∇Θ + δV · ∇θ = δΔΘ,

δ
∂V

∂τ
+ δ(V · ∇v + v · ∇V ) = −μ1δ∇P + μ1Δv + μ1δΔV − 2(θ + εT p)(Θ + μ1δεT P )k.

(11)

The equations of system (11) are valid in the region Ω. At the solid wall, the following conditions are satisfied:

V = 0, Θ = 0. (12)

The conditions at the free boundary are written as follows [5]:

F1τ + v · ∇F1 + δV · ∇f1 = 0,

−μ1δP + 2μ1δD(V )n · n + 4μ1D(v)n · n1 =
∂p

∂n
R − 2μ1

∂D(v)
∂n

n · nR,

δD(V )n · xα1,2 +
∂D(v)

∂n
n · xα1,2R + D(v)n · (Rn)α1,2 + D(v)n1 · xα1,2 = 0,

(13)
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(∂Θ
∂n

+
∂2θ

∂n2
R + ∇θ · n1

)
+ Bi

(
Θ +

∂θ

∂n
R

)
= 0.

Here F1 = F1(ξ, τ) is the perturbation f1; f1 = f1(ξ, τ) = ζ − f(ξ, η, τ) = 0 is the equation of the unperturbed
boundary, R is the local departure of the free boundary along the normal from the unperturbed state; and n1 is
the perturbation of the normal n:

n1 =
1

EG − F 2
[(FRα2 − GRα1)xα1 + (FRα1 − ERα2)xα2 ],

E = |xα1 |2, G = |xα2 |2 and F = xα1 ·xα2 are the coefficients of the first quadratic formula, and x(α1, α2, τ) is the
free surface Γt specified in parametric form. In the case considered, xα1 = (1, 0, 0), xα2 = (0, 1, 0), n = (0, 0, 1).

System (11) is supplemented by the initial conditions

V = V0(ξ), div V0(ξ) = 0, Θ = Θ(ζ).

5. Problem of Small Perturbations of Equilibrium. We consider the problem (11)–(13) of the
equilibrium of a free-boundary layer described by the functions ve, pe, and θe. The system of equations for the
perturbations in dimensionless coordinates is written as

Uξ + Vη + Wζ = 0, Θτ + δh1W = δΔΘ,

Uτ/μ1 = −Pξ + ΔU, Vτ/μ1 = −Pη + ΔV, (14)

Wτ/μ1 = −Pζ + ΔW + R (θ + εT p)Θ + 2(θ + εT p)εT P,

where h1 = Al∗/T ; R = 2/(μ1δ) is the Rayleigh number.
The boundary conditions are given by

U = V = W = 0, Θ = 0 at ζ = 0; (15)

−Rτ + δW = 0, Uζ + Wξ = 0, Vζ + Wη = 0,

−μ1δP + 2μ1δWζ = h2R, Θζ + Bi (Θ + h1R) = 0 at ζ = λ,
(16)

where h2 = ∂p/∂ζ.
The solution of the boundary-value problem (14)–(16) is sought for in the form of normal waves:

(V , P, Θ, R) = (V (ζ), P (ζ), Θ(ζ), R(ζ)) exp [i(α1ξ + α2η − Cτ)]. (17)

Here α1 and α2 are the dimensionless wavenumbers along the x and y axes, respectively, and C = Cr + Ci is a
complex decrement that defines the perturbation propagation in time. Substitution of (17) into (14)–(16) yields a
problem for which we can use the Squire transformation Z = iα1U + iα2V . After the transformation, the system
becomes

Z + W ′ = 0, −iCΘ + δh1W = δ(Θ′′ − k2Θ),

−iCZ/μ1 = k2P + Z ′′ − k2Z, (18)

−iCW/μ1 = −P ′ + W ′′ − k2W + R (θ + εT p)Θ + 2(θ + εT p)εT P,

where k2 = α2
1 + α2

2 is the modified wavenumber. The boundary conditions are written as

Z = 0, W = 0, Θ = 0 at ζ = 0; (19)

Z ′ = 0, Θ′ + Bi (Θ + h1δiW/C) = 0, −P + 2W ′ = R h2iW/(2C) at ζ = λ. (20)

The boundary-value problem (18)–(20) is an eigenvalue problem for the complex decrement C. For the equilibrium
state ve, pe, θe to be stable with respect to small perturbations of the form (17), it is necessary and sufficient that
the imaginary part Ci of all eigenvalues C be negative.
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6. Asymptotic Behavior of Long Waves. The parameters Z, W , P , Θ, and C can be written as follows
(for k → 0):

Z = Z0 + kZ1 + . . . , W = W0 + kW1 + . . . , P = P0 + kP1 + . . . ,

Θ = Θ0 + kΘ1 + . . . , C = C0 + kC1 + . . . .

After substitution of the indicated expansion into system (18), we write the resulting equation in a zero approxi-
mation

Z ′′
0 = −iC0Z0/μ1 (21)

with the boundary conditions

Z0 = 0 at ζ = 0, Z ′
0 = 0 at ζ = λ. (22)

Multiplying Eq. (21) by the complex-conjugate value Z∗
0 and integrating the result over the segment [0, λ], we obtain

λ∫

0

|Z ′
0|2 dξ = − iC0

μ1

λ∫

0

|Z0|2 dξ,

whence −iC/μ1 > 0. Because μ1 > 0, it follows that −iC > 0. Therefore, C0 = iCi is a purely imaginary number
and Ci < 0. This implies that the long-wave perturbations damp monotonically.

Let us refine the form of C0. We denote iC0/μ1 = μ2. Then, Eq. (21) can be written as

Z ′′
0 + μ2Z0 = 0.

Since μ2 > 0, we have Z0 = C1 cos
√

μ2 ζ + C2 sin
√

μ2 ζ. In the last expression, the constants C1 and C2 are
determined from the boundary conditions (22). In this case, C1 = 0, μ2 = π2n2, and

C0 = −iμ1π
2n2. (23)

7. Numerical Solution. The spectral problem (18)–(20) is solved using an orthogonalization method [6].
System (18) is brought to the form y′ = Ay, where y(x) is the vector of unknown quantities and A(x) is the
coefficient matrix; and 0 � x � 1. After the substitution

x = ζ/λ, y1 = Z, y2 = Z ′, y3 = W, y4 = P, y5 = Θ, y6 = Θ′

we obtain the problem

y′
1 = λy2, y′

2 = (−iCλ/μ1 + k2λ)y1 − k2λy4, y′
3 = −λy1,

y′
4 = −λ3y2 + λ(iC/μ1 − k2)y3 + 2(θ + εT p)εT λy4 + λR (θ + εT p)y5, (24)

y′
5 = λy6, y′

6 = h1λy3 + λ(k2 − iC/δ)y5

with the boundary conditions

y1 = 0, y3 = 0, y5 = 0 at x = 0,

y2 = 0, 2λy1 + R h2iy3/(2C) + y4 = 0, Bih1δiy3/C + Bi y5 + y6 = 0 at x = 1.

For x = 1, the boundary conditions can be written in the matrix form Dy(1) = 0, where D is a 3× 6 matrix, whose
nonzero elements have the following values:

d12 = d24 = d36 = 1, d21 = 2λ, d23 = R h2i/(2C), d33 = Bi h1δi/C, d35 = Bi .

The remaining elements of the matrix D are equal to zero.
The solution of system (24) is sought in the form

y =
3∑

j=1

pjy
j,
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Fig. 4. Complex decrements Ci(k): 1) l = 500 m, R = 1.51 · 1016, Bi = 0.093, and k∗ = 1.31;
2) l = 730 m, R = 2.72 · 1016, Bi = 0.107, and k∗ = 0.984; 3) l = 1000 m, R = 2.61 · 1016,
Bi = 0.109, and k∗ = 0.829.

Fig. 5. Neutral curves R(k): 1) l = 1000 m, R1 = 3578.3, k1 = 1.42, R∗ = 1178.5, and k∗ = 2.03;
2) l = 500 m, R1 = 3280.2, k1 = 1.98, R∗ = 1178.5, and k∗ = 2.03.

where the coefficients pj are found from the system Dy(1) = 0 and y1, y2, and y3 are linearly independent vectors:

y1(0) = (0, 1, 0, 0, 0, 0), y2(0) = (0, 0, 0, 1, 0, 0), y3(0) = (0, 0, 0, 0, 0, 1).

To find the eigenvalue C, it is necessary to know the initial approximation C0, which is chosen from condi-
tion (23).

The stability of a free-boundary water layer was studied for the following parameter values: δ0 = 5·10−8 Pa−1,
θg = 291 K, pg = 101,300 Pa, ν = 1.45 · 10−6 m2/sec, and χ = 1.32 · 10−7 m2/sec. The calculations were performed
for l = 500, 730, and 1000 m. The value l = 730 m corresponds to the average depth of Lake Baikal. For the
indicated values of the physical parameters, the dependence of Ci = Im C on the wavenumber k was obtained.

Figure 4 gives curves of Ci(k) for various layer thicknesses l (k∗ are the critical wavenumbers for which the
equilibrium state becomes unstable). The same curve for a wider range of the wavenumber k is shown in the insert.

8. Comparison of Results. The stability boundary is determined from the relation Ci(R) = 0. Neutral
perturbations correspond to the case Ci = 0. Setting C = 0 in the problem (18)–(20), we obtain the neutral
curves of stability. Let us compare the results obtained with the known results of the same problem for the limiting
case where the equation of state has the form of (1). This problem is considered in [7]. Figure 5 shows a curve
of the Rayleigh number versus the wavenumber (neutral curves). The ordinate shows the ratio of the Rayleigh
number obtained in the present study to the critical values of the Rayleigh number R∗ determined in [7] (R1 are the
critical Rayleigh numbers which are the minimum values on the corresponding neutral curves; k1 are the critical
wavenumbers for which the values of R1 are reached). In Fig. 5 it is evident that the values of R∗ are much smaller
than the values of R1. In addition, it should be noted that as the Biot number decreases, the critical values of the
Rayleigh number decrease and the instability region is shifted to the larger values of the wavenumber.

I thank V. K. Andreev for the useful discussions.
This work was supported by the Krasnoyarsk Regional Science Foundation (Grant No. 12F003M) and Inte-

gration project of the Siberian Division of the Russian Academy of Sciences No. 131 and the Program of Support
of Leading Scientific Schools of the Russian Federation (Grant No. NSh-5873.2006.1).

206



REFERENCES

1. M. N. Shimaraev and N. G. Granin, “On the stratification and convection mechanism in Baikal,” Dokl. Akad.
Nauk SSSR, 321, No. 2, 381–385 (1991).

2. O. B. Bocharov, O. F. Vasilev, and T. É. Ovchinnikova, “Approximate equation of state for fresh water near
the temperature of maximum density,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 35, No. 4, 556–558 (1999).

3. T. M. Ravens, O. Kosis, A. Wuest, and N. G. Granin, “Small-scale turbulence and vertical mixing in Lake
Baikal,” Limnol. Oceanogr., No. 45, 159–173 (2000).

4. M. N. Shimaraev, V. I. Verbolov, N. G. Granin, and P. P. Sherstyankin, Physical Limnology of Lake Baikal:
A Review, S. n., Irkutsk–Okayama (1994).

5. V. K. Andreev, “Small perturbations of thermocapillary liquid flow with an interface,” in: Mathematical Modeling
in Mechanics, Proc. Workshop, Vol. 1, Institute of Computational Simulation, Sib. Div., Russian Academy of
Sciences, Krasnoyarsk (1997), pp. 27–40. (Deposited in VINITI 02.12.97, No. 446-1397.)

6. S. K. Godunov, “On the numerical solution of boundary-value problems for systems of linear ordinary differential
equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).

7. K. A. Nadolin, “Convection in a horizontal liquid layer with inversion of specific volume,” Izv. Akad. Nauk SSSR,
Mekh. Zhidk. Gaza, No. 1, 43–49 (1989).

207


